
presented by:

Brad Frieden

In-Circuit Debug Techniques for
System Designs Utilizing FPGAs
In-Circuit Debug Techniques for
System Designs Utilizing FPGAs

July 23, 2003

© Copyright 2003 Agilent Technologies, Inc.

Welcome.

Agenda

• Debug and characterization challenges

• General system debug
• Options to view FPGA internal nodes
• Observing the FPGA boundary and

surrounding system
• Tips learned from examples

• Options to debug and characterize fast I/O

Agenda
Welcome to Agilent’s eSeminar on debug methodologies for FPGA-based
systems. Today, we’ll look at the nature of such systems and how that
presents debug challenges. Next, we’ll consider the ways that one can
get access to internal FPGA signals as well as other system signals. Then
we’ll spend most of our time looking at real-life design examples and how
designers debugged problems in those systems. Based on what we learn
from these cases, a number of helpful approaches and tips become
evident and we will discuss those. Finally, we’ll also consider options
related to high-speed I/O.

Let’s begin by considering some of the unique challenges related to
FPGA system debug.

Debug Challenges

• Innovation often in FPGAs
• new focus of validation and debug

• Seeing inside the FPGA is often helpful
• sometimes not easy, pins limited

• Synchronous chip designs pretty manageable
with EDA tools–
• asynchronous & system issues better

debugged in-circuit

When you look to the nature of the F P G A systems, there are a number
of factors that can make in circuit debug a challenge. First of all a good
portion of the innovation is what is placed inside the FPGA, so the FPGA
ends up becoming a focus of the debug and validation effort.

It is often very important to be able to see inside the FPGA but often that
is easier said than done because the external pins are often not available
for debug or only a limited number are available.

EPA tools work very well for synchronous designs but asynchronous
situations, like crossing time domains can become quite tricky.

Debug Challenges

• Problems difficult to simulate
• Interaction with rest of the system
• Corner cases
• Signal integrity effects

• FPGAs are becoming larger and faster
• Often internal visibility minimized by

lack of debug pin availability

With some of the latest FPGAs is it is now possible to include large IP
blocks such as microprocessors. Some of the IP, the hard cores, where
Xilinx provides a black box functionality, does not allow you to look
inside, thus limiting your visibility. With soft cores that are synthesized
from R T L code, it is possible to look inside.

The size of available FPGAs is getting larger and the possible speeds are
increasing. Even though the devices are larger, the designs are now
larger too and can still find yourself pin limited.

Higher Levels of System Integration

• Critical signals are “invisible”
• Complex “embedded” subsystem integration
• Significant HW/SW interaction

uP Memory
controller

Video
Output

Video
decoder

I/O

UART IR_out IR_in

uP Memory
controller

Video
Output

Video
decoder

I/O

UART IR_out IR_in

This increasing complexity presents some new challenges for debug and
system integration.

Critical signals are buried deep and not naturally visible.
Entire subsystems are internal to the FPGA, limiting or complicating system
integration & debug.

System complexity increases dramatically; integration challenges are higher
than ever.

Fast I/O Characterization Challenges

• Electrical signals now at > 1GHz
• PC traces taking FPGA I/O signals require

careful design

• Data valid regions have moved to < 500 psec
• Jitter has become a critical factor

When it comes to Fast I/Os, especially those running at GHz rates, PC
board traces are essentially acting as transmission lines. Part of the
system design involving FPGAs with fast I/Os is the careful design of the
signal path.

Agenda

• Debug and characterization challenges

• General system debug
• Options to view FPGA internal nodes
• Observing the FPGA boundary and

surrounding system
• Tips learned from customer examples

• Options to debug and characterize fast I/O

Lets now turn to general system debug and the main ways it is possible
to see internal nodes inside an F PGA

1) Route FPGA Nodes to Pins

• Advantages:
• Deep and wide trace
• Sophisticated

triggering
• Synchronous or

Asynchronous
• System Correlation

• Tradeoffs:
• Consumes pins
• Requires probing planning
• May require re-compile

Pins

FPGA

Probe
points

Agilent 16702B External
Logic
Analyzer

The first approach is pretty basic—just route out the nodes of interest
directly to external pins on the FPGA and look at them with a logic
analyzer. With this method come a number of advantages surrounding
the debug features of an external logic analyzer such as deep memory
and sequence triggering. It’s also very straightforward to correlate
internal FPGA signals with other signals captured from the target system.

Of course, the big issue can be how many pins are available for this.
Certainly, this approach also carries with it a moderate investment.
However, the logic analyzer is used for many other general purpose
applications.

It’s best to determine early in the development process how many pins
you want to dedicate to debug.

Customer example: Fiber to the Home

ATM Network Has Corrupted Packets While Moving
Data

Analog
Voice

CODEC

T1

FPGA

Clock &
Data for
Each

Physical
Interface

Passive
Optical
Network

(Voice, Data, & Video)

SER
DES

T

R

uP

10/100
Ethernet MAC

Let’s look at an engineering example where this approach was used.
Here a designer was experiences problem with a Fiber to the Home ATM
Network that would reside at the customer location. This was the part of
a system which connected to a passive optical network and then pulled
out voice, data, and video into standard formats for use at the customer
site. The system was experiencing corrupted packets while moving data.
Some of the system characteristics were:

ATM network bringing fiber into a home and offering voice, video and
data capability

The FPGA is in the data path and takes in raw data from fiber optic clock
and data recovery circuits. The FPGA served as a packet processing
engine. Multiple state machines, triggered by cells coming through,
would look at cell headers and determine what kind of service was being
processed. They would then perform decoding, buffering and formatting
operations. The state machines had to be “perfectly timed”.

Puts out Ethernet frames to the 10/100 Ethernet parts

Are a number of Utopia buses all over and “sort of Utopia” buses for
proprietary chip to chip communications

Debug Approach

• Chose large FPGA to prototype

• Prototyping board had other elements

• Dedicated 64 pins for debug and routed to
Mictor connectors

• Put a Mictor connector on Utopia bus to
view traffic

In this situation, the designer chose a large FPGA, many times that
needed for the final design, for use in developing the system on a
prototyping board. This prototyping board had the things they
anticipated for the final design, all the optical circuitry, a microprocessor,
and Ethernet.

The strategy was to get Mictor connectors on the board from the get go,
and they dedicated 64 pins on the FPGA for debug. He placed a Mictor
connector on a utopia bus in order to view traffic.

Debug Setup

Analog
VoiceCODECFPGA

Physical
Interface

SER
DES

T

R

uP

10/100
Ethernet MAC

Logic
Analyzer

64 pins to
Internal nodes

(state
machines)

Mictor
connector on
Utopia bus to

look at packets.

Trigger on
wrong packet.

Key to the approach is triggering at a high packet level and then viewing
the condition of multiple state machines inside the FPGA via numerous
debug pins.

Their goal was to trigger the logic analyzer from the utopia bus, where
they were seeing wrong packets, and then look at the exact condition of
the state machines to try and sort out what was going wrong.

Packet Level Trigger

The logic analyzer allowed the designer to set up a specific Utopia bus
packet condition to trigger on.

Protocol Decode View

Now it was possible to see the traffic on the Utopia bus, not just in low
level Hex values, but also at a protocol level.

The Discovery / Fix

• Could see and trigger on corrupted Utopia bus packets

• Could see conditions where the internal state machines
weren’t perfectly right

• Saw wasn’t flagging discarding corrupted packets

• Got these “conditions” into the functional level
simulation

• Isolated, reproduced, and fixed the state machine
problem

He watched the utopia bus at a packet level with the Datacom Tool Set in
the logic analyzer. He was able to see and trigger on corrupted packets
as hoped.

As he looked at the state machine activity inside the FPGA, immediately
before the corrupted packet, he could seek the exact condition where one
of the state machines wasn't perfectly right. In fact, corrupted packets
were supposed to be detected and flagged as something to be discarded,
but that wasn't happening. So it was normal that the memory might
overflow in heavy traffic situations and packets get corrupted, but it was
unacceptable to fail to flag the errors.

Key to the process was getting these conditions into the functional level
simulation. Then there were able to isolate, reproduce in simulation, and
then fix in simulation, the state machine problem.

Key Takeaways

• Choice of large FPGA

• Dedication of pins and connectors for debug

• Ability to probe data bus and see state machines

• Was hard to simulate traffic – the logic analyzer
helped extend the coverage of the test bench

Successful completing project on time because
of upfront debug planning

A few takeaways from this example:

The engineer really valued having a lot of debug pins and chose the
FPGA accordingly.
It was critical of First probe the data bus and then see the condition of the
internal state machines. The engineer pointed out that it was a very
difficult to stimulate traffic, and by identifying specific traffic conditions
that caused problems, he was able to extend the coverage of the test
bench in simulation.

1a) Route FPGA Nodes Directly to Pins

• Advantages:
• Simple scope

paradigm
• View analog and

digital channels
• Deep memory
• More powerful than

oscilloscope

• Tradeoffs:
• Limited to 20 channels
• Asynchronous capture

only
• Less powerful triggering

than logic analyzer

Mixed
Signal
Oscilloscope

Pins

FPGA

Probe
Points

Agilent 54832D

One variation to this first approach is to use a Mixed Signal Oscilloscope,
or MSO to monitor signals on FPGA debug pins or other pins of the
FPGA instead of using a logic analyzer.

An MSO can serve as a basic, easy to use tool for observing FPGA
activity as well as observing signals on the FPGA boundary as the FPGA
interfaces to other parts of a system. Because an MSO offers 4 analog
channels plus another 16 digital channels with deep memory capture,
there’s the opportunity to observe operations like state machine activity,
with some hope of triggering on a symptom of a problem, while looking
backward in time to find a root cause of a problem. Depending on how
difficult the debug situation, the MSO can serve as a starting point, and a
logic analyzer can be brought in when more complex triggering, greater
channels, or other logic analyzer capabilities are needed.

With the analog channels of an MSO or a standard oscilloscope, one has
high resolution to view signal characteristics at the FPGA boundary.
Such signals must meet specifications to interface to the rest of the
system. An oscilloscope can make detailed timing measurements and
view signal integrity characteristics of signals present. Some of these
scope capabilities are less pertinent if trying to observe activity “inside”
the FPGA via debug pins. Because of the routing delays to debug pins,
channel to channel skew is introduced which obscures the actual timing
present inside the FPGA

Mixed Signal Oscilloscope Setup

Define digital labels, define bus, define trigger

In many digital applications today, it has become important to be able to
look at digital signals of interest under very specific target conditions,
such as a memory write in SDRAM. Traditional oscilloscopes, with only 2
or 4 analog input channels, aren’t able to trigger on the more complex
control lines that define such conditions.

Now, with Mixed Signal Oscilloscope, it’s very simple to label bits of
interest, including multi-signal buses, and then define a trigger condition
of interest.

Here, the MSO triggers when RAS is high, CAS low, Write Enable low,
Chip Select low, and on the rising edge of clock.

Identify Slow Edge on Address Bit
Trigger on and View SDRAM Control Signals,
Address Bit

Notice that the address does not cleanly change from 000 to 003 and
back, but instead takes a while to finally reach a 003 value. Having
triggered on a memory write, and then scrolled through the trace to this
problem point, an analog channel was then used to view the problem bit
to look for the root cause of the problem. It wasn’t skew or ground
bounce, but rather, it was a slow edge, perhaps from a weak driver.

2) Route FPGA nodes via a MUX to pins

• Advantages:
• Fewer Pins
• Deep Memory
• Great Triggering
• System Correlation

• Tradeoffs:
• Greater Complexity
• Moderate Investment
• Can Only See MUX

Selected Nodes

External
Logic
Analyzer

FPGA

Probe
points

Test
M

UX

Pins
Agilent 16702B

The second approach is similar to the first except that internal nodes are
routed to a MUX and fewer pins are dedicated to debug. The
disadvantage here is managing the MUX process and you can’t see all the
signals at once.

Our research shows that many designers build in a test MUX that allows a
customer to select a single group of signals to bring out to the pins at a
single time. This technique minimizes the number of pins dedicated for
debug. Typcial pin count for debug is in the range of 8 to 32 pins while
internal nodes feeding the MUX is typically in the order of 32 to a hundred
channels. When the customer finishes debug, the text MUX circuitry and
pins for debug remain in the design. Taking them out would change the
design characteristics and require a new round of debug.

This approach also has the variation of using an MSO or traditional scope
to observe signals.

ILA Block
RAM

FPGA

JTAG
Probe
points

3) ILA core & FPGA Block RAM

• Advantages:
• No additional pins

required
• Inexpensive
• Can select many

nodes

• Tradeoffs:
• Consumes FPGA RAM
• Synchronous capture only
• Limited memory depth (32k)
• Basic triggering

Several vendors offer options to embed logic analyzer cores inside their
FPGAs. For example, Xilinx has Integrated Logic Analyzer (ILA) cores
including internal block RAM to store signals. Nodes of interest are
selected, traces captured, and then output via JTAG to their ChipScope
software.

One big advantage here is that no FPGA pins are required beyond the
JTAG connection. This is particularly useful for designs that do not have
pins available for debug. It’s also an inexpensive solution.

There are a number of tradeoffs. These include limited memory, the
consumption of important FPGA memory, and limited triggering. As with
all cores, inclusion of a logic analyzer core will have an impact on the
design itself. For this reason, many engineers prefer to leave the core in
the FPGA even after the design is debugged.

Options to Insert Cores

Control

USER
FUNCTION

ILA

USER
FUNCTION

USER
FUNCTION

ILA

ILA

PC running
ChipScope MultiLINX Cable or

Parallel Cable III
JTAG
Connection

Target Board

Target FPGA
with ILA cores

JTAG

Generate cores
Insert into HDL/Verilog
Connect Buses
Synthesize

or
Drop cores into pre-synthesized design

Place & route Download bitstream

or

There are a couple of ways to insert ILA blocks into a design. The first
involves inserting them at the verilog level synthesizing the design and
then doing a place-and-route. At that point, the ChipScope software can
download a bitstream to the FPGA to program it with a design including
the ILA blocks.

The other approach is to take a presynthesized design, drop ILA cores
into that design, then place-and-route, and download the design into the
FPGA.

You’ll see there is actually a JTAG control block in the FPGA that
interfaces with the logic analyzer blocks. Data is pulled out by this
control block through the JTAG, back to the PC, and then presented on
the ChipScope interface.

ChipScope Pro Analyzer View

Here's a view of the ChipScope Pro interface in its logic analyzer screen.

Example: System Interface Controller
Having Errors When Pulling Data from DDR Memory

Pr
op

rie
ta

ry
 B

ac
kp

lan
e

Bridge
FPGA

Memory
Controller
FPGA

DDR Mem

Slow,
15 MHz
Parallel

Slow,
15 MHz
Parallel

Fast,
100 MHz
Parallel

Other
Devices

Other
Devices

One engineering example involves a case where a system interface
controller was experiencing errors when a 15 MHz proprietary backplane
tried to read DDR memory via a couple of FPGAs.

The first FPGA really served as a bridge allowing the selection of multiple
devices, one being the DDR memory. The second FPGA served as a DDR
memory controller and interface between the 100 MHz DDR and the 15
MHz system bus.

Both FPGAs were from the Xilinx Virtex II family.

Situation / Challenges

• One pin available on Bridge FPGA for routing out
signals

• Only one pin available on Memory Controller
FPGA

• Mictor connector for Logic Analyzer to look at
proprietary bus (seeing errors on some memory
reads from DDR)

• Hadn’t seen any problems in simulation

The designer had some tough constraints to work with. First there was
only one pin available on the bridge FPGA for routing out internal nodes,
and only one pin on the memory controller FPGA. The designer had
placed a Mictor connector on its board to be able to look at a proprietary
bus with the logic analyzer.

There were errors on some memory reads from DDR, but no errors had
been seen in simulation

Initial Debug Approach

• Since only one debug pin per FPGA,
decided to use ILA cores

• Monitor backplane using Mictors

• Hopefully could see root cause via ILA
cores or external LA

Given that there was only one FPGA debug pin per FPGA the designer
felts he would need to use integrated logic analyzer cores in the FPGAs.
He planned to monitor the back plane with logic analyzer, and his hope
was that he'd see the source of the problem either by looking at the
internal FPGA activity or the external bus activity.

A Problem

• Independent ILA core & LA views did not
reveal problem

• Could only set a basic trigger with the ILA
core

That was hopeful thinking, but the independent ILA core and logic
analyzer views did not reveal what the root cause of the problem was.
One problem was that the ILA core approach could only have a simple
trigger set for them.

Next Try:

Pr
op

rie
ta

ry
 B

ac
kp

la
ne

Bridge
FPGA

Memory
Controller
FPGA

DDR
Mem

Logic
Analyzer

ILA
ILA

Capture
Via Mictor
Connector

Trigger out to ILA cores

Trigger LA on error, cross trigger ILA cores

So this was going to take a more complex approach for debug. The
designer decided to trigger the logic analyzer when he saw an error on
the proprietary back plane, but then trigger the integrated logic analyzer
blocks on the inside each of the FPGA case. The goal was to try and
understand exactly what was happening inside the FPGAs at the point
when the error occurred, and to possibly have to look back in time for the
sequence of steps that led up to the visible error seen out on the back
plane. Part of the challenge was that it was a multiplexed Address/Data
bus on the backplane, and a logic analyzer was necessary to de-multiplex
that bus so that you could then trigger on it.

The Discovery

Memory FPGA would fetch DDR data, but the
acknowledge didn’t get sent out to the Bridge FPGA
fast enough

B: 15 MHz
Bridge FPGA

C: 100 MHz Memory
Controller FPGA

Observed Behavior

Read

AckRead Ack Window

Ack Read

Read

A: 100 MHz
Clock For ILA cores

Well that was the right approach. Cross triggering from the back plane
condition to the logic analyzer blocks inside the FPGA did in fact
uncovered the root cause of the failure. What was happening was when
the bridge FPGA requested a read, the memory controller FPGA did a
read from 100 MHz DDR memory. But then the 15 MHz bridge FPGA
needed to receive an acknowledge signal within a certain time. By
looking inside the FPGAs, it became obvious that the acknowledge was
coming outside that time window. So this was a timing error, but it didn't
deal with set up and hold types of timing problems surrounding the clock
edge. This was a timing error that dealt with a sequencing of events
between two time domains.

The designer saw the acknowledge problem with the ILA block inside the
Bridge FPGA. When looking just at the memory controller FPGA initially
without the cross-trigger from the logic analyzer, he could see good data
was making it out of the memory FPGA. It was only with a cross trigger,
and an ability to see inside the bridge FPGA at the precise time that error
occurred on the backplane, that he could catch the acknowledge timing
problem.

The Fix

• Fixed it by pulling 130 nsec of pipeline
stages out of the 2nd FPGA

So the designer had to pull 130 nanoseconds of pipeline stages out of the
second FPGA in order to pull this acknowledge signal back in.

Key Takeaways

• Cross-triggering from external logic
analyzer to ILA cores revealed root cause
of the failure

• By clocking the ILAs from the 100 MHz
DDR clock, there was adequate timing
resolution to catch the latency problem

It was important to be able to cross trigger from a symptom of the
problem with an external logic analyzer, to the ILA blocks inside the
FPGAs, in order to see the root cause of the failure.

In this example, by clocking the ILAs from the 100 MHz DDR clock, there
was good timing resolution to see the latency problem on the 15 MHz
FPGA. ChipScope ILAs D. if asynchronous capture, but it almost served
as a timing analyzer on the slower bus.

4) ILA/ATC Cores & External Memory

• Advantages:
• Fewer trace pins

required
• Deep trace (2M)
• Preserves FPGA

block RAM for
design

• Small Footprint

• Tradeoffs:
• Only Synchronous Capture
• Limited to 75 Internal nodes
• Must plan for mictor

connector

JTAG

ChipScope Pro

LAN

Trace

FPGA

Probe
points

FPGA Trace
Port AnalyzerJTAG

TraceILA
With
ATC

The fourth way of viewing internal nodes in an FPGA is a solution that
involves new ILA cores Xilinx coupled with an Agilent trace core (ATC)
and an Agilent FPGA Trace Port Analyzer (TPA).

Here, internal nodes are time division multiplexed out to external memory
in the TPA. This approach has a number of advantages. The first can be
fewer pins as well as up to 2-Meg deep memory, and that memory doesn’t
draw on FPGA resources. Some of the tradeoffs are similar to the those
we saw with the basic ILA approach.

Let’s look more closely at the ILA /ATC option.

Agilent Trace Core

Maximum Internal FPGA
Clock Domain Frequency
& Trace Depth* Available # of Internal Probe Points

up to 50 MHz with 500K states 11 27 43 59 75

up to 100 MHz with 1M states 5 13 21 29 37

up to 200 Mhz with 2M states 3 7 11 15 19

Required number of FPGA
pins 4 8 12 16 20

NOTE: USER MUST SUPPLY CLOCK FOR TRACE.

Probe
points

FPGA
pinsILA

With
ATC

Time division multiplexing via the Agilent Trace Core can be very
advantageous to reduce pin count. For example, 75 signals running at 50
MHz can be 4:1 TDM’d down to only 20 pins while still giving full
visibility to those signals.

Some details follow:

ATC comes in multiple pre-defined configurations depending on the
clock speed of the internal circuit to be measured. ATC’s TDM is based
on the assumption that most FPGA circuits run at a fraction of the speed
that the I/O pins are capable of (200 MHz single-ended).

For circuits up to 50 Mhz, this allows Agilent to use a 4:1 time-division
MUX and monitor up to 75 probe points simultaneously at a memory
depth of 256K states(samples). One channel is used for the clock and as
MUXing ratios increase, some of the TPA storage resources are used for
sync pulses so when the data is diplayed, triggering and packet
information can be unraveled by ChipScope. For circuits running at >50
MHz to 100 MHz, one can use a 2:1 MUX.

Agenda

• Debug and characterization challenges

• General system debug
• Options to view FPGA internal nodes for debug
• Observing the FPGA boundary and surrounding

system
• Tips learned from examples

• Options to debug and characterize fast I/O

Agenda
So it’s been important to look inside FPGAs for general debug, but it’s
also very important to look at the FPGA boundary and at other locations
in a system at the board level.

Probing Is Key For Logic Analysis

E5378A
Samtec
1.5Gb/s

(Cload = 1.5pF)

E5381A
Flying Lead

1.5Gb/s
(Cload = 0.9pF)

E5380A
Mictor

600Mb/s
(Cload = 3.0pF)

E5387A
Soft-Touch
>2.5Gb/s
(Cload =
0.7pF)4 popular logic analyzer probes

When trying to look at FPGA boundary signals or other signals in an overall
system, planning for connecting in-circuit debug tools is important. In the last
months, the options for such connections have greatly increased.

The evolution of Logic Analyzer Probes has given the user the following
-Lower Capacitive Loading
-Higher Resonant Frequency of the Probe Load
-Higher Bandwidth Probes

- The user puts down a ‘landing pattern’ on the target system.
- The connector-less probe is then attached to the system with a
‘retention module’

“Connector-Less” NEW!

Advantages:
- No connector - cost

is reduced
- Signal doesn’t go

through a connector,
loading is reduced.
(~0.7pF)

- Signal routing is
improved.

- Signal Density is
increased

B1A1

B27A27

- +

D6
D7

CLK
D8

D0
D1

D2
D3

D4
D5

D9
D10

D11
D12

D13
D14

D15
N/C

+
-
+
-

+
-
+
-

+
-
+
-

+
-
+
-

+
-
+
-

+
-
+
-

+
-
+
-

+
-
+
-

+
-

ZOOM DETAIL

One important, new category of logic analyzer probes is called
“Connector-Less” probing. This is the newest technology in logic
analyzer probing and presents some of the most attractive options to the
end user.
The concept of a connector- less probe is that the user only puts down
landing pads on his PCB. Traces are routed to or through the pads. A
retention module is used to align the probe tip with the pads and provide
mechanical stability. The logic analyzer probe is then attached to the
board with the assistance of the retention module and makes contact
with the pads on the board.
The advantages of connector- less probing are that since the signals do
not travel through a connector to get to the logic analyzer probe tip, there
is less capacitive loading on the target. For example, the E5378A probe
discussed earlier had an equivalent lumped capacitance of 1.5pF.
Connectorless probes are on the order of 0.7pF, a 2x improvement. Also
attractive about this new technology is that the user does not need to
load connectors onto the target PCB, reducing the cost of the final
assembly. Finally, improvements have been made to the rout e-ability of
connector- less probes. The user can now easily route directly through
the probe pads without making layer changes. Since the capacitance is
so low and there is no connector, the logic analyzer footprint can be left
in the design on the final release of the PCB without any electrical
degradation to system performance.

Probing is Also Key For Scopes

Edge speeds
as fast as
100 psec

Clock rates
up to
multiple GHz

3.5, 5 & 7 GHz
BW 1130
InfinMax active
probes

Edge speeds
as fast as 1
ns

Clock rates
up to around
200 MHz

1.5 GHz BW
1156A active
probes (1 GHz
system BW)

Edge speeds
as fast as 2
nsec

Clock rates
up to around
100 MHz

500 MHz BW
passive probes

An important part of debugging FPGA-based systems is the ability to
make oscilloscope measurements both at the FPGA boundary and at
other points in the system. Passive probes have their place, but at the
faster clock rates and edge speeds scope bandwidths of 1 GHz or better
become necessary. For the 1 GHz Infiniium scopes, the 1156A active
probes are the right choice to maintain a full 1 GHz system bandwidth for
single-ended measurements. A wide range of connection accessories
with documented performance give lots of options for how to attach to
various points in the system. Soon there will be new differential active
probes to maintain full system bandwidth as well.

For the very fast signals, the 54850 series of Infiniium scopes are a best
fit. For these scopes, the InfiniMax single-ended and differential probes
and various high bandwidth connection accessories offer unmatched
performance.

Calculations for limits in edge speeds are based on system bandwidths
necessary for around a 5% rise time measurement error. The 500 MHz
and 1 GHz scope models assumed a gaussian scope frequency response,
and the very high bandwidth scope models (> 1 GHz bandwidth) assumed
a flat scope frequency response. Designers may be comfortable with
higher errors than 5%, especially for timing measurements, which would
extend the use range.

A “System” View

Agilent 16702B display

ILA Core signals imported and correlated to
logic analyzer capture

ILA Core
Signals

External
LA
Signals

When making measurements in the system, it can be helpful to see both
the internal FPGA signals and other system signals. Earlier we saw a view
of SDRAM signals internal to a Xilinx Virtex II Pro FPGA. What about
trying to view other system signals in context with those internal FPGA
signals?

Xilinx and Agilent have worked together to make this easy. By dedicating
one pin for a common debug signal, Xilinx ChipScope Pro can export
internal FPGA signals by LAN to Agilent system logic analyzers. Here's a
logic analyzer view of ChipScope data time correlated the logic analyzer
captured data.

Also debugged clock & data recovery

• Connected to transmit and
receive signal buses and
used 2 GHz “Timing Zoom”

Analog
Voice

CODECFPGA

Physical
Interface

SER
DES

T

R

uP

10/100
Ethernet MAC

Logic
Analyzer

What about an example of looking at the boundary of an FPGA?

If we look back to that earlier fiber to the home ATM network example,
there was another interesting debug situation on this same design, that
involved the debug of the clock and data recovery circuits on the front
end. These were measurements taken outside the FPGA on its boundary,
where the parallel transmit and receive buses interfaced with the FPGA.

They were having a failure, and trying to see the conditions surrounding
this error. They put the transmitter on one logic analyzer machine and
the receiver on the other, and gathered a deep trace to begin looking for
the nature of the problem. They ended up using a single logic analyzer
machine and its 2 GHz Timing Zoom capture to observe clock phase with
respect to data and the conditions where errors were occurring.

Debug Approach

Used 2 GHz Timing Zoom with one
machine to see clock phase differences

Watching timing of data with respect to the
clocks that caused failure

Key Takeaways

• The FPGA boundary is an important place
to observe timing requirements

• Can use a logic analyzer or scope

• Had a need to look at fast signals outside
the FPGA, like the clock and data recovery
circuits, with high speed timing

A few takeaways from this example:

The designer had a need to look at signals outside the FPGA that needed
to meet FPGA input specifications, likes the clock and data recovery
circuit signals, with high-speed 2 gigahertz timing.

Agenda

• Debug and characterization challenges

• General system debug
• Options to view FPGA internal nodes for debug
• Observing the FPGA boundary and surrounding

system
• Tips learned from examples

• Options to debug and characterize fast I/O

Agenda
So we’ve looked at several customer debug examples and considered
some of the options surrounding basic debug. What can we learn from
this?

Tips Learned

• ILA cores and external logic analyzers are
complimentary solutions

• ILAs give lots of visibility (wide)
• External LA gives deep capture, timing

analysis
• Still will want to dedicate some pins for LA

USER
FUNCTION

ILA

First, we’ve seen how embedded logic analyzer cores can be very helpful
for visibility into FPGAs. We’ve also seen that external logic analyzers or
scopes can be helpful too, given deep memory and the ability to do
careful timing analysis. In fact, both approaches have their place and can
be used together. Given that, it is still wise to dedicate some pins for this
external trace.

For ILA Capability …

• Route JTAG pins to connector on board
so option open

• Either .100 BERG (to get basic ILA
capability) or

• Mictor connector with new debug trace
layout (off-chip, deep trace port
analyzer capture)

So for starters, plan so that you have options for ILA capability, with
either a BERG connector for basic capture in Block RAM, or with a Mictor
connector for the new off-chip approach with a Trace Port Analyzer.

Dedicate Pins for Exclusive LA Trace

• # pins depends on design complexity / Fast Time
To Market
• For proven designs, 5-10 pins may be

sufficient
• For new designs or Fast Time To Market, 15-65

pins better

• As a rule, you should:
• Have at least enough pins to debug the widest

state machine in the design
• Aim to have enough pins available for the

fastest datapath bus

Here are some possible ideas about the number of debug pins you might
need. It was clear, from the examples we’ve discussed, that it was often
critical to be able to have enough pins to see internal state machines, and
to see datapaths. Then take advantage of the ways additional visibility is
possible with the ILA cores.

Possible Steps to Take in FPGA Debug

• 1st Inspect datapath -> deep trace

• 2nd Isolate error conditions if possible

• 3rd Add trigger logic or set up logic analyzer to
trigger ILAs

• 4th Inspect state machines -> deep trace (trigger
using datapath)

• 5th Gather data from 1 to 4 and simulate to
replicate and fix problem

Looking at a variety of debug situations, a common theme seemed to
form in the way people discovered fixes to their problems. Many times,
designers saw a symptom of a problem on a bus, figured out how to
isolate that symptom, and then defined a trigger so that they could look
internally to the FPGA to see state machine activity. With that kind of
visibility, they could form a hypothesis to the problem and simulate it.
Then the fix would become obvious.

Agenda

• Debug and characterization challenges

• General system debug
• Options to view FPGA internal nodes for

debug
• Observing the FPGA boundary and system
• Tips learned from examples

• Options to debug and characterize fast I/O

Agenda
So what about approaches when dealing with high speed I/O debug and
characterization?

Options to Characterize High-Speed I/O

• Interconnect characterization & modeling:

• Sampling oscilloscope based TDR

• VNA based physical layer test system

• High frequency analog simulation tool

First, there are a number of options for looking at passive interconnect to
understand transmission line characteristics. These vary from sampling
oscilloscope based solutions like Time Domain Reflectometry, or TDR, to
Vector Network Analyzer based solutions. There are also simulation
tools very useful to understand high frequency analog effects to fast
digital signals.

Options to Characterize High-Speed I/O

• Active signal characterization:

• Real-time high bandwidth scope, active probes

• Sampling scope (Digital Communications
Analyzer)

• Serial / Parallel BERTs

• High-end pulse/pattern generators

• Logic analyzer with Eye Scan (for parallel)

To understand whether a high-speed I/O is working properly, you
certainly can’t only look at the passive interconnect. That’s where a wide
variety of measurements come into play to look at fast I/O signals and the
transfer of data in a system.

Customer example:

• Daughter Card
• Virtex-II Pro
• 3.125 Gb/s

I/Os

• High-speed Backplane
• High-Density

Connectors
• 3.125 Gb/s XAUI

bus
• Differential lines

(100 ohms)

Debug Serial I/O Interconnects

• Daughter Card

Our final example crosses over from general debug over into high speed
I/O debug and characterization. Here a company was designing the
backplane structure for line cards in a router. It was going to run at 3.125
Gb/s XAUI.

It was necessary to characterize the performance of the transmission line
paths from the FPGA I/O output to the FPGA input on a second daughter
card. A spec had to be met for impedance and crosstalk.

Insight With Time Domain Reflectometer

• Differential
Impedance (Zdiff)

• Measured 87 Ω at
interface
to backplane

• Too low for spec
(100 Ω)

distance
Im

pe
da

nc
e

Zdiff

The TDR showed where the impedance was too low, and pointed to the
location where capacitance needed to be designed out of a transition
from the daughter board PC board trace out to a connector.

The Fix

• Needed to improve transition
to connector (ie. trace layout) on daughter
board with FPGA

The measurements pointed to the need for a better termination at the far
end.

Active Characterization

• Measurements to the probe tip now
possible to 6 GHz bandwidth

• View of signal integrity, eyes and jitter

• Many active probe options for connection

• Still best to plan ahead for probing – like
surface level trace exposure

With a High Bandwidth Real-time Scope

New measurements are now available with the advent of high bandwidth
real-time scopes and new technology differential active probes. Some of
the planning for this can include routing some key signals on the surface
so if it is necessary, the LPI layer can be scratched back to expose a
differential pair, or the LPI layer can be omitted from an area intended for
probing.

InfiniMax Active Probing

• Solder-in probe head
• Socketed probe head
• Versatile differential browser
• Differential and single-ended

10 cm solder-in
probe head

10 cm socketed
probe head

Differential browsing
probe head

Differential & single-end
connectivity kits

Higher Bandwidth Connection Solutions
Use models for the InfiniiMax active probe system are similar to traditional active
probes, including “browsing” connections, 10cm solder-in connections, and
10cm socketed connections. In addition, the InfiniiMax probe system includes
both single-ended and differential measurement use models. The big difference
between the InfiniiMax probe system and traditional active probe systems is
probe system bandwidth. Even with long connection use models, there is no
bandwidth loss penalty.

For high-speed I/O on ball-grid array type FPGAs, it is probably not best to place
vias under the FPGA. It turns out, if you do, you don’t gain too much for probing
since there is still as much as a 14 mm trace from the package to the substrate.
You’ll probably want to use a double termination (source and receiver), and
route key signals to the surface so you can do mid-bus probing. One approach
is to simply design a small area where those traces are not coated with LPI
(insulated coating on top of board) for easy differential probe access.
Alternatively, one can scratch off the LPI in area desired for probing.

Sometimes it’s best to probe back at a transmitter location, even though the
receiver is inside the FPGA at the substrate point.

Pulse Response

1.2 GHz Clock, 100ps Risetime

200ps/div

Vsource
Vin
Vout

for 10 cm Solder-in Probe Head

Pulse Response for 10cm solder-in probe heads – 1.2GHz Clock, 100ps
Risetime
These are the same waveforms shown in the previous slide for the 10cm
solder-in probe head with all of the waveforms overlaid on top of one
another. This is as good as it gets! No other scope and probe combination
can duplicate these results. From any vendor.

Fast Parallel Bus Validation

• Can view signal integrity on many lines

• Quick identification of “problem” bits

• Can take advantage of SoftTouch
connector-less, flying lead, or Samtec
probing

With Logic Analyzer “Eye Scan”

Designers also face signal integrity validation on fast parallel buses, such
as 622 MHz SPI 4.2 signals. Now there is a new approach to identifying
problems. It’s with a logic analyzer and called Eye Scan.

SPI 4.2 Bus Seen With Eye Scan

Eye Scan is a third “mode” in a logic analyzer beyond “State” or “Timing”
modes. With Eye Scan, the analyzer threshold is not just set to a “1 – 0”
level, but rather is varied over a range of levels. For each level, the
analyzer also adjust the time point of observation before and after trigger,
and then counts the number of transitions it sees through the threshhold.

The result is that over many clocks, an eye diagram is built up with
multiple GHz analog bandwidth, and looking at many signals.

Here, with a cursor, we could just touch the left had side of the eye
opening, and see exactly “which” bits are closing off the eye.

This can point a designer immediately to problems on specific bits such
as jitter, noise, crosstalk, or other signal integrity issues. Then a high
bandwidth scope and active probe can be used to look more closely.

Active Debug Approach Using DCA
• Measure Jitter on Key Net

• Random Jitter is
Gaussian, due to noise

• Deterministic Jitter is
systematic, due to
clock, data, crosstalk,
…

• Fix:
• Eye Diagram and

Histogram provide
quick visual clues

• Bands in Eye Diagram
indicate Deterministic
Jitter

Unit Interval

vo
lta

ge

Earlier we used TDR and crosstalk measurements to look at a passive
interconnect. It is also important to make some measurements on
signals through the backplane and look at jitter. It is possible to separate
out the random jitter and deterministic jitter with software tools. Here is
an example where it is obvious that there is data dependent, deterministic
jitter that could pose a problem.

Logic Analysis for PCI Express

Connect

Display
Acquire

Validation Steps

With some of the fastest serial I/Os, such as PCI Express, dedicated
solutions are necessary to validate the bus or reveal problems. An
example is the front end probe required to de-multiplex the fast PCI
Express signal into slower, parallel signals that the logic analyzer can
consume. Such a probe includes sophisticated triggering capabilities as
well, thus reserving trigger resources inside the logic analyzer frame and
acquisition module.

This solution uses the SoftTouch technology to do either mid-bus
probing to a field of pads or an attachment into a PCI Express slot.

Fast I/O Key Takeaways

• At data rates >1 Gb/s every interconnect (trace, IC
lead, connector) will impact the signal quality --
"Signal Integrity“

• Using TDR allowed designer to improve interconnect
performance and identify impedance problems before
doing active signal debug

• May need to develop interconnect models to simulate
interconnect performance before laying out the board
and measuring Jitter

There were a number of important takeaways for I/O characterization..

Fast I/O Key Takeaways (cont)

• Must plan up front for logic analyzer and scope
probing of fast buses (Soft Touch, Samtec, surface
traces, etc.)

• New techniques exist to check parallel bus signal
integrity (Eye Scan)

• Both real-time and repetitive scopes offer jitter
measurement capability

• Dedicated solutions are available for specific fast
buses (e.g. PCI Express …)

Takeaways continued.

Tools From Agilent

• Agilent 16702B logic analysis
system

• Agilent Infiniium Mixed Signal
Oscilloscopes

• Agilent E5904B FPGA Trace
Port Analyzer

• Application resources:
www.agilent.com/find/fpga

TPA ChipScope Pro

16702B LA

Infiniium MSO

Soft Touch
Probes

For General FPGA Debug

1.5 GHz
Active
Probes

ILA
With
ATC

When it comes to basic FPGA system debug, Agilent provides a variety of
tools to help the designer of an FPGA based system, from the new Trace
Port Analyzer to see internal nodes, to Mixed Signal Oscilloscopes for
basic viewing of system activity, to logic analyzers with sophisticated
triggering and data interpretation to point the designer to the root cause
of their problems.

Tools From Agilent

• Agilent 86100B DCA
• Agilent N4900 Serial BERTs
• Agilent 81250 ParBERT
• Agilent 83133/4 Pulse/Pattern

Generators
• Web resources:

www.agilent.com/find/fpga

DCA

Serial
BERT

ParBERT
Data Gen

High-end Real-time scope

7 GHz InfinMax
Probes

for fast I/O Characterization

When it comes to systems with fast I/Os, Agilent provides a variety of
tools to help the designer of an FPGA based system, from the CSA to
parallel bit error rate testers.

