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Welcome.



Agenda

• Debug and characterization challenges

• General system debug
• Options to view FPGA internal nodes
• Observing the FPGA boundary and 

surrounding system
• Tips learned from examples

• Options to debug and characterize fast I/O

Agenda
Welcome to Agilent’s eSeminar on debug methodologies for FPGA-based 
systems.  Today, we’ll look at the nature of such systems and how that 
presents debug challenges.  Next, we’ll consider the ways that one can 
get access to internal FPGA signals as well as other system signals. Then 
we’ll spend most of our time looking at real-life design examples and how 
designers debugged problems in those systems.  Based on what we learn 
from these cases, a number of helpful approaches and tips become
evident and we will discuss those.  Finally, we’ll also consider options 
related to high-speed I/O. 

Let’s begin by considering some of the unique challenges related to 
FPGA system debug.



Debug Challenges 

• Innovation often in FPGAs
• new focus of validation and debug

• Seeing inside the FPGA is often helpful
• sometimes not easy, pins limited

• Synchronous chip designs pretty manageable 
with EDA tools–
• asynchronous & system issues better 

debugged in-circuit

When you look to the nature of the F P G A systems, there are a number 
of factors that can make in circuit debug a challenge.  First of all a good 
portion of the innovation is what is placed inside the FPGA, so the FPGA 
ends up becoming a focus of the debug and validation effort.

It is often very important to be able to see inside the FPGA but often that 
is easier said than done because the external pins are often not available 
for debug or only a limited number are available. 

EPA tools work very well for synchronous designs but asynchronous 
situations, like crossing time domains can become quite tricky. 



Debug Challenges 

• Problems difficult to simulate
• Interaction with rest of the system
• Corner cases
• Signal integrity effects

• FPGAs are becoming larger and faster
• Often internal visibility minimized by 

lack of debug pin availability

With some of the latest FPGAs is it is now possible to include large IP 
blocks such as microprocessors.  Some of the IP, the hard cores, where 
Xilinx provides a black box functionality, does not allow you to look 
inside, thus limiting your visibility.  With soft cores that are synthesized 
from R T L code, it is possible to look inside. 

The size of available FPGAs is getting larger and the possible speeds are 
increasing.  Even though the devices are larger, the designs are now 
larger too and can still find yourself pin limited.  



Higher Levels of System Integration

• Critical signals are “invisible”
• Complex “embedded” subsystem integration
• Significant HW/SW interaction
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This increasing complexity presents some new challenges for debug and 
system integration.

Critical signals are buried deep and not naturally visible.
Entire subsystems are internal to the FPGA, limiting or complicating system 
integration & debug.

System complexity increases dramatically; integration challenges are higher 
than ever.



Fast I/O Characterization Challenges

• Electrical signals now at > 1GHz 
• PC traces taking FPGA I/O signals require 

careful design

• Data valid regions have moved to < 500 psec
• Jitter has become a critical factor

When it comes to Fast I/Os, especially those running at GHz rates, PC 
board traces are essentially acting as transmission lines.  Part of the 
system design involving FPGAs with fast I/Os is the careful design of the 
signal path.  



Agenda

• Debug and characterization challenges

• General system debug
• Options to view FPGA internal nodes
• Observing the FPGA boundary and 

surrounding system
• Tips learned from customer examples

• Options to debug and characterize fast I/O

Lets now turn to general system debug and the main ways it is possible 
to see internal nodes inside an F PGA



1) Route FPGA Nodes to Pins

• Advantages:
• Deep and wide trace
• Sophisticated 

triggering
• Synchronous or 

Asynchronous
• System Correlation

• Tradeoffs:
• Consumes pins
• Requires probing planning
• May require re-compile
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The first approach is pretty basic—just route out the nodes of interest 
directly to external pins on the FPGA and look at them with a logic 
analyzer.  With this method come a number of advantages surrounding 
the debug features of an external logic analyzer such as deep memory 
and sequence triggering.  It’s also very straightforward to correlate 
internal FPGA signals with other signals captured from the target system.  

Of course, the big issue can be how many pins are available for this.  
Certainly, this approach also carries with it a moderate investment.  
However, the logic analyzer is used for many other general purpose 
applications.

It’s best to determine early in the development process how many pins 
you want to dedicate to debug.



Customer example:  Fiber to the Home

ATM Network Has Corrupted Packets While Moving 
Data
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Let’s look at an engineering example where this approach was used.  
Here a designer was experiences problem with a Fiber to the Home ATM 
Network that would reside at the customer location.  This was the part of 
a system which connected to a passive optical network and then pulled 
out voice, data, and video into standard formats for use at the customer 
site.  The system was experiencing corrupted packets while moving data.  
Some of the  system characteristics were:

ATM network bringing fiber into a home and offering voice, video and 
data capability

The FPGA is in the data path and takes in raw data from fiber optic clock 
and data recovery circuits. The FPGA served as a packet processing 
engine.  Multiple state machines, triggered by cells coming through, 
would look at cell headers and determine what kind of service was being 
processed.  They would then perform decoding, buffering and formatting 
operations.  The state machines had to be “perfectly timed”.

Puts out Ethernet frames to the 10/100 Ethernet parts

Are a number of Utopia buses all over and “sort of Utopia” buses for 
proprietary chip to chip communications



Debug Approach

• Chose large FPGA to prototype

• Prototyping board had other elements

• Dedicated 64 pins for debug and routed to 
Mictor connectors

• Put a Mictor connector on Utopia bus to 
view traffic

In this situation, the designer chose a large FPGA, many times that 
needed for the final design, for use in developing the system on a 
prototyping board.  This prototyping board had the things they 
anticipated for the final design, all the optical circuitry, a microprocessor, 
and Ethernet. 

The strategy was to get Mictor connectors on the board from the get go, 
and they dedicated 64 pins on the FPGA for debug.  He placed a Mictor
connector on a utopia bus in order to view traffic.



Debug Setup
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Key to the approach is triggering at a high packet level and then viewing 
the condition of multiple state machines inside the FPGA via numerous 
debug pins.

Their goal was to trigger the logic analyzer from the utopia bus, where 
they were seeing  wrong packets, and then look at the exact condition of 
the state machines to try and sort out what was going wrong.



Packet Level Trigger

The logic analyzer allowed the designer to set up a specific Utopia bus 
packet condition to trigger on.



Protocol Decode View

Now it was possible to see the traffic on the Utopia bus, not just in low 
level Hex values, but also at a protocol level.



The Discovery / Fix

• Could see and trigger on corrupted Utopia bus packets

• Could see conditions where the internal state machines 
weren’t perfectly right

• Saw wasn’t flagging discarding corrupted packets

• Got these “conditions” into the functional level 
simulation

• Isolated, reproduced, and fixed the state machine 
problem

He watched the utopia bus at a packet level with the Datacom Tool Set in 
the logic analyzer.  He was able to see and trigger on corrupted packets 
as hoped. 

As he looked at the state machine activity inside the FPGA, immediately 
before the corrupted packet, he could seek the exact condition where one 
of the state machines wasn't perfectly right.  In fact, corrupted packets 
were supposed to be detected and flagged as something to be discarded, 
but that wasn't happening.  So it was normal that the memory might 
overflow in heavy traffic situations and packets get corrupted, but it was 
unacceptable to fail to flag the errors. 

Key to the process was getting these conditions into the functional level 
simulation.  Then there were able to isolate, reproduce in simulation, and 
then fix in simulation, the state machine problem. 



Key Takeaways

• Choice of large FPGA

• Dedication of pins and connectors for debug

• Ability to probe data bus and see state machines

• Was hard to simulate traffic – the logic analyzer 
helped extend the coverage of the test bench

Successful completing project on time because 
of upfront debug planning

A few takeaways from this example: 

The engineer really valued having a lot of debug pins and chose the 
FPGA accordingly.  
It was critical of First probe the data bus and then see the condition of the 
internal state machines.  The engineer pointed out that it was a very 
difficult to stimulate traffic, and by identifying specific traffic conditions 
that caused problems, he was able to extend the coverage of the test 
bench in simulation. 



1a) Route FPGA Nodes Directly to Pins

• Advantages:
• Simple scope 

paradigm
• View analog and 

digital channels
• Deep memory
• More powerful than 

oscilloscope

• Tradeoffs:
• Limited to 20 channels
• Asynchronous capture 

only
• Less powerful triggering 

than logic analyzer
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One variation to this first approach is to use a Mixed Signal Oscilloscope, 
or MSO to monitor signals on FPGA debug pins or other pins of the 
FPGA instead of using a logic analyzer.

An MSO can serve as a basic, easy to use tool for observing FPGA
activity as well as observing signals on the FPGA boundary as the FPGA 
interfaces to other parts of a system.   Because an MSO offers 4 analog 
channels plus another 16 digital channels with deep memory capture, 
there’s the opportunity to observe operations like state machine activity, 
with some hope of triggering on a symptom of a problem, while looking 
backward in time to find a root cause of a problem.  Depending on how 
difficult the debug situation, the MSO can serve as a starting point, and a 
logic analyzer can be brought in when more complex triggering, greater 
channels, or other logic analyzer capabilities are needed.

With the analog channels of an MSO or a standard oscilloscope, one has 
high resolution to view signal characteristics at the FPGA boundary.  
Such signals must meet specifications to interface to the rest of the 
system.  An oscilloscope can make detailed timing measurements and 
view signal integrity characteristics of signals present.  Some of these 
scope capabilities are less pertinent if trying to observe activity “inside”
the FPGA via debug pins.  Because of the routing delays to debug pins, 
channel to channel skew is introduced which obscures the actual timing 
present inside the FPGA



Mixed Signal Oscilloscope Setup

Define digital labels, define bus, define trigger

In many digital applications today, it has become important to be able to 
look at digital signals of interest under very specific target conditions, 
such as a memory write in SDRAM.  Traditional oscilloscopes, with only 2 
or 4 analog input channels, aren’t able to trigger on the more complex 
control lines that define such conditions.

Now, with Mixed Signal Oscilloscope, it’s very simple to label bits of 
interest, including multi-signal buses, and then define a trigger condition 
of interest.

Here, the MSO triggers when RAS is high, CAS low, Write Enable low, 
Chip Select low, and on the rising edge of clock.



Identify Slow Edge on Address Bit
Trigger on and View SDRAM Control Signals, 
Address Bit

Notice that the address does not cleanly change from 000 to 003 and 
back, but instead takes a while to finally reach a 003 value.  Having 
triggered on a memory write, and then scrolled through the trace to this 
problem point, an analog channel was then used to view the problem bit 
to look for the root cause of the problem.  It wasn’t skew or ground 
bounce, but rather, it was a slow edge, perhaps from a weak driver.



2) Route FPGA nodes via a MUX to pins

• Advantages:
• Fewer Pins
• Deep Memory
• Great Triggering
• System Correlation

• Tradeoffs:
• Greater Complexity
• Moderate Investment
• Can Only See MUX 
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The second approach is similar to the first except that internal nodes are 
routed to a MUX and fewer pins are dedicated to debug.  The 
disadvantage here is managing the MUX process and you can’t see all the 
signals at once.  

Our research shows that many designers build in a test MUX that allows a 
customer to select a single group of signals to bring out to the pins at a 
single time.  This technique minimizes the number of pins dedicated for 
debug.  Typcial pin count for debug is in the range of 8 to 32 pins while 
internal nodes feeding the MUX is typically in the order of 32 to a hundred 
channels.  When the customer finishes debug, the text MUX circuitry and 
pins for debug remain in the design.  Taking them out would change the 
design characteristics and require a new round of debug.  

This approach also has the variation of using an MSO or traditional scope 
to observe signals.
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3) ILA core & FPGA Block RAM

• Advantages:
• No additional pins 

required
• Inexpensive
• Can select many 

nodes

• Tradeoffs:
• Consumes FPGA RAM 
• Synchronous capture only 
• Limited memory depth (32k)
• Basic triggering

Several vendors offer options to embed logic analyzer cores inside their 
FPGAs.  For example, Xilinx has Integrated Logic Analyzer (ILA) cores 
including internal block RAM to store signals.  Nodes of interest are 
selected, traces captured, and then output via JTAG to their ChipScope
software.

One big advantage here is that no FPGA pins are required beyond the 
JTAG connection.  This is particularly useful for designs that do not have 
pins available for debug.  It’s also an inexpensive solution.

There are a number of tradeoffs.  These include limited memory, the 
consumption of important FPGA memory, and limited triggering.  As with 
all cores, inclusion of a logic analyzer core will have an impact on the 
design itself.  For this reason, many engineers prefer to leave the core in 
the FPGA even after the design is debugged.



Options to Insert Cores
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There are a couple of ways to insert ILA blocks into a design.  The first 
involves inserting them at the verilog level synthesizing the design and 
then doing a place-and-route. At that point, the ChipScope software can 
download a bitstream to the FPGA to program it with a design including 
the ILA blocks.

The other approach is to take a presynthesized design, drop ILA cores 
into that design, then place-and-route, and download the design into the 
FPGA.

You’ll see there is actually a JTAG control block in the FPGA that 
interfaces with the logic analyzer blocks.  Data is pulled out by this 
control block through the JTAG, back to the PC, and then presented on 
the ChipScope interface.



ChipScope Pro Analyzer View

Here's a view of the ChipScope Pro interface in its logic analyzer screen.



Example:  System Interface Controller 
Having Errors When Pulling Data from DDR Memory
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One engineering example involves a case where a system interface
controller was experiencing errors when a 15 MHz proprietary backplane 
tried to read DDR memory via a couple of FPGAs. 

The first FPGA really served as a bridge allowing the selection of multiple 
devices, one being the DDR memory.  The second FPGA served as a DDR 
memory controller and interface between the 100 MHz DDR and the 15 
MHz system bus.  

Both FPGAs were from the Xilinx Virtex II family.



Situation / Challenges

• One pin available on Bridge FPGA for routing out 
signals

• Only one pin available on Memory Controller 
FPGA

• Mictor connector for Logic Analyzer to look at 
proprietary bus (seeing errors on some memory 
reads from DDR)

• Hadn’t seen any problems in simulation

The designer had some tough constraints to work with.  First there was 
only one pin available  on the bridge FPGA for routing out internal nodes, 
and only one pin on the memory controller FPGA.  The designer had 
placed a Mictor connector on its board to be able to look at a proprietary 
bus with the logic analyzer. 

There were errors on some memory reads from DDR, but no errors had 
been seen in simulation



Initial Debug Approach

• Since only one debug pin per FPGA, 
decided to use ILA cores

• Monitor backplane using Mictors

• Hopefully could see root cause via ILA 
cores or external LA

Given that there was only one FPGA debug pin per FPGA the designer 
felts he would need to use integrated logic analyzer cores in the FPGAs.  
He planned to monitor the back plane with logic analyzer, and his hope 
was that he'd see the source of the problem either by looking at the 
internal FPGA activity or the external bus activity.



A Problem

• Independent ILA core & LA views did not 
reveal problem

• Could only set a basic trigger with the ILA 
core

That was hopeful thinking, but the independent ILA core and logic 
analyzer views did not reveal what the root cause of the problem was.  
One problem was that the ILA core approach could only have a simple 
trigger set for them.



Next Try:
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So this was going to take a more complex approach for debug.  The 
designer decided to trigger the logic analyzer when he saw an error on 
the proprietary back plane, but then trigger the integrated logic analyzer 
blocks on the inside each of the FPGA case.  The goal was to try and 
understand exactly what was happening inside the FPGAs at the point 
when the error occurred, and to possibly have to look back in time for the 
sequence of steps that led up to the visible error seen out on the back 
plane. Part of the challenge was that it was a multiplexed Address/Data 
bus on the backplane, and a logic analyzer was necessary to de-multiplex 
that bus so that you could then trigger on it.



The Discovery

Memory FPGA would fetch DDR data, but the 
acknowledge didn’t get sent out to the Bridge FPGA 
fast enough
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Well that was the right approach.  Cross triggering from the back plane 
condition to the logic analyzer blocks inside the FPGA did in fact 
uncovered the root cause of the failure.  What was happening was when 
the bridge FPGA requested a read, the memory controller FPGA did a 
read from 100 MHz DDR memory.  But then the 15 MHz bridge FPGA 
needed to receive an acknowledge signal within a certain time.  By 
looking inside the FPGAs, it became obvious that the acknowledge was 
coming outside that time window.  So this was a timing error, but it didn't 
deal with set up and hold types of timing problems surrounding the clock 
edge.  This was a timing error that dealt with a sequencing of events 
between two time domains. 

The designer saw the acknowledge problem with the ILA block inside the 
Bridge FPGA.  When looking just at the memory controller FPGA initially 
without the cross-trigger from the logic analyzer, he could see good data 
was making it out of the memory FPGA.  It was only with a cross trigger, 
and an ability to see inside the bridge FPGA at the precise time that error 
occurred on the backplane, that he could catch the acknowledge timing 
problem.



The Fix

• Fixed it by pulling 130 nsec of pipeline 
stages out of the 2nd FPGA

So the designer had to pull 130 nanoseconds of pipeline stages out of the 
second FPGA in order to pull this acknowledge signal back in. 



Key Takeaways

• Cross-triggering from external logic 
analyzer to ILA cores revealed root cause 
of the failure

• By clocking the ILAs from the 100 MHz 
DDR clock, there was adequate timing 
resolution to catch the latency problem 

It was important to be able to cross trigger from a symptom of the 
problem with an external logic analyzer, to the ILA blocks inside the 
FPGAs, in order to see the root cause of the failure. 

In this example, by clocking the ILAs from the 100 MHz DDR clock, there 
was good timing resolution to see the latency problem on the 15 MHz 
FPGA. ChipScope ILAs D. if asynchronous capture, but it almost served 
as a timing analyzer on the slower bus.



4) ILA/ATC Cores & External Memory

• Advantages:
• Fewer trace pins 

required
• Deep trace (2M)
• Preserves FPGA 

block RAM for 
design

• Small Footprint

• Tradeoffs:
• Only Synchronous Capture
• Limited to 75 Internal nodes
• Must plan for mictor 

connector
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The fourth way of viewing internal nodes in an FPGA is a solution that 
involves new ILA cores Xilinx coupled with an Agilent trace core (ATC) 
and an Agilent FPGA Trace Port Analyzer (TPA).

Here, internal nodes are time division multiplexed out to external memory 
in the TPA. This approach has a number of advantages.  The first can be 
fewer pins as well as up to 2-Meg deep memory, and that memory doesn’t 
draw on FPGA resources.  Some of the tradeoffs are similar to the those 
we saw with the basic ILA approach.

Let’s look more closely at the ILA /ATC option.



Agilent Trace Core

Maximum Internal FPGA 
Clock Domain Frequency       
& Trace Depth* Available # of Internal Probe Points

up to 50 MHz with 500K states 11 27 43 59 75

up to 100 MHz with 1M states 5 13 21 29 37

up to 200 Mhz with 2M states 3 7 11 15 19

Required number of FPGA 
pins 4 8 12 16 20
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Time division multiplexing via the Agilent Trace Core can be very 
advantageous to reduce pin count. For example, 75 signals running at 50 
MHz can be 4:1 TDM’d down to only  20 pins while still giving full 
visibility to those signals.  

Some details follow:

ATC comes in multiple pre-defined configurations depending on the 
clock speed of the internal circuit to be measured.  ATC’s TDM is based 
on the assumption that most FPGA circuits run at a fraction of the speed 
that the I/O pins are capable of (200 MHz single-ended).

For circuits up to 50 Mhz, this allows Agilent to use a 4:1 time-division 
MUX and monitor up to 75 probe points simultaneously at a memory
depth of 256K states(samples).  One channel is used for the clock and as 
MUXing ratios increase, some of the TPA storage resources are used for
sync pulses so when the data is diplayed, triggering and packet 
information can be unraveled by ChipScope.  For circuits running at >50 
MHz to 100 MHz, one can use a 2:1 MUX.



Agenda

• Debug and characterization challenges

• General system debug
• Options to view FPGA internal nodes for debug
• Observing the FPGA boundary and surrounding 

system
• Tips learned from examples

• Options to debug and characterize fast I/O

Agenda
So it’s been important to look inside FPGAs for general debug, but it’s 
also very important to look at the FPGA boundary and at other locations 
in a system at the board level.



Probing Is Key For Logic Analysis
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When trying to look at FPGA boundary signals or other signals in an overall 
system, planning for connecting in-circuit debug tools is important.  In the last 
months, the options for such connections have greatly increased.

The evolution of Logic Analyzer Probes has given the user the following
-Lower Capacitive Loading
-Higher Resonant Frequency of the Probe Load
-Higher Bandwidth Probes



- The user puts down a ‘landing pattern’ on the target system.
- The connector-less probe is then attached to the system with a 
‘retention module’

“Connector-Less” NEW!

Advantages:
- No connector - cost  

is reduced 
- Signal doesn’t go 

through a connector, 
loading is reduced.    
(~0.7pF)

- Signal routing is 
improved.

- Signal Density is 
increased
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ZOOM DETAIL

One important, new category of logic analyzer probes is called 
“Connector-Less” probing. This is the newest technology in logic 
analyzer probing and presents some of the most attractive options to the 
end user.
The concept of a connector- less probe is that the user only puts down 
landing pads on his PCB. Traces are routed to or through the pads. A 
retention module is used to align the probe tip with the pads and provide 
mechanical stability. The logic analyzer probe is then attached to the 
board with the assistance of the retention module and makes contact 
with the pads on the board.
The advantages of connector- less probing are that since the signals do 
not travel through a connector to get to the logic analyzer probe tip, there 
is less capacitive loading on the target. For example, the E5378A probe 
discussed earlier had an equivalent lumped capacitance of 1.5pF.
Connectorless probes are on the order of 0.7pF, a 2x improvement. Also 
attractive about this new technology is that the user does not need to 
load connectors onto the target PCB, reducing the cost of the final 
assembly. Finally, improvements have been made to the rout e-ability of 
connector- less probes. The user can now easily route directly through 
the probe pads without making layer changes. Since the capacitance is 
so low and there is no connector, the logic analyzer footprint can be left 
in the design on the final release of the PCB without any electrical 
degradation to system performance.



Probing is Also Key For Scopes
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An important part of debugging FPGA-based systems is the ability to 
make oscilloscope measurements both at the FPGA boundary and at 
other points in the system.  Passive probes have their place, but at the 
faster clock rates and edge speeds scope bandwidths of 1 GHz or better 
become necessary.  For the 1 GHz Infiniium scopes, the 1156A active 
probes are the right choice to maintain a full 1 GHz system bandwidth for 
single-ended measurements.  A wide range of connection accessories 
with documented performance give lots of options for how to attach to 
various points in the system.  Soon there will be new differential active 
probes to maintain full system bandwidth as well.

For the very fast signals, the 54850 series of Infiniium scopes are a best 
fit.  For these scopes, the InfiniMax single-ended and differential probes 
and various high bandwidth connection accessories offer unmatched 
performance.   

Calculations for limits in edge speeds are based on system bandwidths 
necessary for around a 5% rise time measurement error.  The 500 MHz 
and 1 GHz scope models assumed a gaussian scope frequency response, 
and the very high bandwidth scope models (> 1 GHz bandwidth) assumed 
a flat scope frequency response.  Designers may be comfortable with 
higher errors than 5%, especially for timing measurements, which would 
extend the use range.



A “System” View
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When making measurements in the system, it can be helpful to see both 
the internal FPGA signals and other system signals.  Earlier we saw a view 
of SDRAM signals internal to a Xilinx Virtex II Pro FPGA.  What about 
trying to view other system signals in context with those internal FPGA 
signals?

Xilinx and Agilent have worked together to make this easy.  By dedicating 
one pin for a common debug signal, Xilinx ChipScope Pro can export 
internal FPGA signals by LAN to Agilent system logic analyzers. Here's a 
logic analyzer view of ChipScope data time correlated the logic analyzer 
captured data. 



Also debugged clock & data recovery

• Connected to transmit and 
receive signal buses and 
used 2 GHz “Timing Zoom”
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What about an example of looking at the boundary of an FPGA?

If we look back to that earlier fiber to the home ATM network example, 
there was another interesting debug situation on this same design, that 
involved the debug of the clock and data recovery circuits on the front 
end.  These were measurements taken outside the FPGA on its boundary, 
where the parallel transmit and receive buses interfaced with the FPGA.  

They were having a failure, and trying to see the conditions surrounding 
this error.  They put the transmitter on one logic analyzer machine and 
the receiver on the other, and gathered a deep trace to begin looking for 
the nature of the problem.  They ended up using a single logic analyzer 
machine and its 2 GHz Timing Zoom capture to observe clock phase with 
respect to data and the conditions where errors were occurring.



Debug Approach

Used 2 GHz Timing Zoom with one 
machine to see clock phase differences

Watching timing of data with respect to the 
clocks that caused failure



Key Takeaways

• The FPGA boundary is an important place 
to observe timing requirements

• Can use a logic analyzer or scope

• Had a need to look at fast signals outside 
the FPGA, like the clock and data recovery 
circuits, with high speed timing

A few takeaways from this example: 

The designer had a need to look at signals outside the FPGA that needed 
to meet FPGA input specifications, likes the clock and data recovery 
circuit signals, with high-speed 2 gigahertz timing. 



Agenda

• Debug and characterization challenges

• General system debug
• Options to view FPGA internal nodes for debug
• Observing the FPGA boundary and surrounding 

system
• Tips learned from examples

• Options to debug and characterize fast I/O

Agenda
So we’ve looked at several customer debug examples and considered 
some of the options surrounding basic debug.  What can we learn from 
this?



Tips Learned

• ILA cores and external logic analyzers are 
complimentary solutions

• ILAs give lots of visibility (wide)
• External LA gives deep capture, timing 

analysis
• Still will want to dedicate some pins for LA

USER
FUNCTION

ILA

First, we’ve seen how embedded logic analyzer cores can be very helpful 
for visibility into FPGAs.  We’ve also seen that external logic analyzers or 
scopes can be helpful too, given deep memory and the ability to do 
careful timing analysis.  In fact, both approaches have their place and can 
be used together.  Given that, it is still wise to dedicate some pins for this 
external trace.  



For ILA Capability …

• Route JTAG pins to connector on board 
so option open

• Either .100 BERG (to get basic ILA 
capability) or 

• Mictor connector with new debug trace 
layout (off-chip, deep trace port 
analyzer capture)

So for starters, plan so that you have options for ILA capability, with 
either a BERG connector for basic capture in Block RAM, or with a Mictor
connector for the new off-chip approach with a Trace Port Analyzer.



Dedicate Pins for Exclusive LA Trace 

• # pins depends on design complexity / Fast Time 
To Market
• For proven designs, 5-10 pins may be 

sufficient
• For new designs or Fast Time To Market, 15-65 

pins better

• As a rule, you should:
• Have at least enough pins to debug the widest 

state machine in the design
• Aim to have enough pins available for the 

fastest datapath bus

Here are some possible ideas about the number of debug pins you might 
need.  It was clear, from the examples we’ve discussed, that it was often 
critical to be able to have enough pins to see internal state machines, and 
to see datapaths.  Then take advantage of the ways additional visibility is 
possible with the ILA cores.



Possible Steps to Take in FPGA Debug

• 1st  Inspect datapath -> deep trace

• 2nd Isolate error conditions if possible

• 3rd Add trigger logic or set up logic analyzer to 
trigger ILAs

• 4th Inspect state machines -> deep trace (trigger 
using datapath)

• 5th Gather data from 1 to 4 and simulate to 
replicate and fix problem

Looking at a variety of debug situations, a common theme seemed to 
form in the way people discovered fixes to their problems.  Many times, 
designers saw a symptom of a problem on a bus, figured out how to 
isolate that symptom, and then defined a trigger so that they could look 
internally to the FPGA to see state machine activity.  With that kind of 
visibility, they could form a hypothesis to the problem and simulate it.  
Then the fix would become obvious.



Agenda

• Debug and characterization challenges

• General system debug
• Options to view FPGA internal nodes for 

debug
• Observing the FPGA boundary and system
• Tips learned from examples

• Options to debug and characterize fast I/O

Agenda
So what about approaches when dealing with high speed I/O debug and 
characterization?



Options to Characterize High-Speed I/O

• Interconnect characterization & modeling:

• Sampling oscilloscope based TDR

• VNA based physical layer test system

• High frequency analog simulation tool 

First, there are a number of options for looking at passive interconnect to 
understand transmission line characteristics.  These vary from sampling 
oscilloscope based solutions like Time Domain Reflectometry, or TDR, to 
Vector Network Analyzer based solutions.  There are also simulation 
tools very useful to understand high frequency analog effects to fast 
digital signals.



Options to Characterize High-Speed I/O

• Active signal characterization:

• Real-time high bandwidth scope, active probes

• Sampling scope (Digital Communications 
Analyzer)

• Serial / Parallel BERTs  

• High-end pulse/pattern generators

• Logic analyzer with Eye Scan (for parallel)

To understand whether a high-speed I/O is working properly, you 
certainly can’t only look at the passive interconnect.  That’s where a wide 
variety of measurements come into play to look at fast I/O signals and the 
transfer of data in a system.



Customer example:

• Daughter Card
• Virtex-II Pro
• 3.125 Gb/s 

I/Os

• High-speed Backplane
• High-Density 

Connectors
• 3.125 Gb/s XAUI 

bus
• Differential lines 

(100 ohms)

Debug Serial I/O Interconnects

• Daughter Card

Our final example crosses over from general debug over into high speed 
I/O debug and characterization.  Here a company was designing the 
backplane structure for line cards in a router.  It was going to run at 3.125 
Gb/s XAUI.

It was necessary to characterize the performance of the transmission line 
paths from the FPGA I/O output to the FPGA input on a second daughter 
card.  A spec had to be met for impedance and crosstalk.



Insight With Time Domain Reflectometer

• Differential 
Impedance (Zdiff)

• Measured 87 Ω at 
interface
to backplane

• Too low for spec 
(100 Ω)

distance
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Zdiff

The TDR showed where the impedance was too low, and pointed to the 
location where capacitance needed to be designed out of a transition 
from the daughter board PC board trace out to a connector. 



The Fix

• Needed to improve transition
to connector (ie. trace layout) on daughter 
board with FPGA

The measurements pointed to the need for a better termination at the far 
end.



Active Characterization

• Measurements to the probe tip now 
possible to 6 GHz bandwidth

• View of signal integrity, eyes and jitter

• Many active probe options for connection

• Still best to plan ahead for probing – like 
surface level trace exposure

With a High Bandwidth Real-time Scope

New measurements are now available with the advent of high bandwidth 
real-time scopes and new technology differential active probes.  Some of 
the planning for this can include routing some key signals on the surface 
so if it is necessary, the LPI layer can be scratched back to expose a 
differential pair, or the LPI layer can be omitted from an area intended for 
probing.



InfiniMax Active Probing

• Solder-in probe head 
• Socketed probe head
• Versatile differential browser
• Differential and single-ended

10 cm solder-in
probe head

10 cm socketed 
probe head

Differential browsing 
probe head

Differential & single-end
connectivity kits

Higher Bandwidth Connection Solutions
Use models for the InfiniiMax active probe system are similar to traditional active 
probes, including “browsing” connections, 10cm solder-in connections, and 
10cm socketed connections. In addition, the InfiniiMax probe system includes 
both single-ended and differential measurement use models. The big difference 
between the InfiniiMax probe system and traditional active probe systems is 
probe system bandwidth. Even with long connection use models, there is no 
bandwidth loss penalty. 

For high-speed I/O on ball-grid array type FPGAs, it is probably not best to place 
vias under the FPGA.  It turns out, if you do, you don’t gain too much for probing 
since there is still as much as a 14 mm trace from the package to the substrate.  
You’ll probably want to use a double termination (source and receiver), and 
route key signals to the surface so you can do mid-bus probing.  One approach 
is to simply design a small area where those traces are not coated with LPI 
(insulated coating on top of board) for easy differential probe access.  
Alternatively, one can scratch off the LPI in area desired for probing.  

Sometimes it’s best to probe back at a transmitter location, even though the 
receiver is inside the FPGA at the substrate point.



Pulse Response

1.2 GHz Clock, 100ps Risetime

200ps/div 

Vsource 
Vin
Vout

for 10 cm Solder-in Probe Head

Pulse Response for 10cm solder-in probe heads – 1.2GHz Clock, 100ps 
Risetime
These are the same waveforms shown in the previous slide for the 10cm 
solder-in probe head with all of the waveforms overlaid on top of one 
another. This is as good as it gets! No other scope and probe combination 
can duplicate these results. From any vendor.



Fast Parallel Bus Validation

• Can view signal integrity on many lines

• Quick identification of “problem” bits

• Can take advantage of SoftTouch 
connector-less, flying lead, or Samtec 
probing

With Logic Analyzer “Eye Scan”

Designers also face signal integrity validation on fast parallel buses, such 
as 622 MHz SPI 4.2 signals.  Now there is a new approach to identifying 
problems.  It’s with a logic analyzer and called Eye Scan.



SPI 4.2 Bus Seen With Eye Scan

Eye Scan is a third “mode” in a logic analyzer beyond “State” or “Timing” 
modes.  With Eye Scan, the analyzer threshold is not just set to a “1 – 0” 
level, but rather is varied over a range of levels.  For each level, the 
analyzer also adjust the time point of observation before and after trigger, 
and then counts the number of transitions it sees through the threshhold.  

The result is that over many clocks, an eye diagram is built up with 
multiple GHz analog bandwidth, and looking at many signals.

Here, with a cursor, we could just touch the left had side of the eye 
opening, and see exactly “which” bits are closing off the eye.

This can point a designer immediately to problems on specific bits such 
as jitter, noise, crosstalk, or other signal integrity issues.  Then a high 
bandwidth scope and active probe can be used to look more closely.  



Active Debug Approach Using DCA
• Measure Jitter on Key Net

• Random Jitter is 
Gaussian, due to noise

• Deterministic Jitter is 
systematic, due to 
clock, data, crosstalk, 
…

• Fix:
• Eye Diagram and 

Histogram provide 
quick visual clues

• Bands in Eye Diagram 
indicate Deterministic 
Jitter
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Earlier we used TDR and crosstalk measurements to look at a passive 
interconnect.  It is also important to make some measurements on
signals through the backplane and look at jitter.  It is possible to separate 
out the random jitter and deterministic jitter with software tools.  Here is 
an example where it is obvious that there is data dependent, deterministic 
jitter that could pose a problem.



Logic Analysis for PCI Express 

Connect

Display
Acquire

Validation Steps

With some of the fastest serial I/Os, such as PCI Express, dedicated 
solutions are necessary to validate the bus or reveal problems. An 
example is the front end probe required to de-multiplex the fast PCI 
Express signal into slower, parallel signals that the logic analyzer can 
consume.  Such a probe includes sophisticated triggering capabilities as 
well, thus reserving trigger resources inside the logic analyzer frame and 
acquisition module.

This solution uses the SoftTouch technology to do either mid-bus 
probing to a field of pads or an attachment into a PCI Express slot.



Fast I/O Key Takeaways

• At data rates >1 Gb/s every interconnect (trace, IC 
lead, connector) will impact the signal quality --
"Signal Integrity“

• Using TDR allowed designer to improve interconnect 
performance and identify impedance problems before 
doing active signal debug

• May need to develop interconnect models to simulate 
interconnect performance before laying out the board 
and measuring Jitter

There were a number of important takeaways for I/O characterization..



Fast I/O Key Takeaways (cont)

• Must plan up front for logic analyzer and scope 
probing of fast buses (Soft Touch, Samtec, surface 
traces, etc.)

• New techniques exist to check parallel bus signal 
integrity (Eye Scan)

• Both real-time and repetitive scopes offer jitter 
measurement capability

• Dedicated solutions are available for specific fast 
buses (e.g. PCI Express …)

Takeaways continued. 



Tools From Agilent

• Agilent 16702B logic analysis 
system 

• Agilent Infiniium Mixed Signal 
Oscilloscopes

• Agilent E5904B FPGA Trace 
Port Analyzer

• Application resources:
www.agilent.com/find/fpga

TPA ChipScope Pro

16702B LA

Infiniium MSO

Soft Touch 
Probes

For General FPGA Debug

1.5 GHz 
Active 
Probes

ILA
With
ATC

When it comes to basic FPGA system debug, Agilent provides a variety of 
tools to help the designer of an FPGA based system, from the new Trace 
Port Analyzer to see internal nodes, to Mixed Signal Oscilloscopes for 
basic viewing of system activity, to logic analyzers with sophisticated 
triggering and data interpretation to point the designer to the root cause 
of their problems.



Tools From Agilent

• Agilent 86100B DCA 
• Agilent N4900 Serial BERTs
• Agilent 81250 ParBERT
• Agilent 83133/4 Pulse/Pattern 

Generators
• Web resources: 

www.agilent.com/find/fpga

DCA

Serial
BERT

ParBERT
Data Gen

High-end Real-time scope

7 GHz InfinMax
Probes

for fast I/O Characterization

When it comes to systems with fast I/Os, Agilent provides a variety of 
tools to help the designer of an FPGA based system, from the CSA to 
parallel bit error rate testers.


